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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-428

INVESTIGATION OF THIRD-ORDER CONTACTOR CONTROL SYSTEMS
WITH TWO COMPLEX POLES WITHOUT ZEROS

By Irmgard Flugge-Lotz and Tomo Ishikawa
SUMMARY

The present paper reports an investigation of third-order systems
under contactor control. The transfer function of the uncontrolled
system has one real and two conjugate camplex poles and may have zeros.
In general, it is assumed that all poles have negative real parts; how-
ever, cases with positive real parts of the camplex poles are included.
The switching function depends on error and error deriveatives, the error
being the difference between the input and output of the system. The
major portion of this report is devoted to systems without zeros in the
transfer function; however, systems with zeros in the transfer function
are discussed briefly.

It is shown that for sn initial error (or a step input) the coef-
ficients of a linear switching function F = e + kje' + kpe" (where

k) and k, s&re coefficients and e, e', and e" are the error and

error derivatives, respectively) can be chosen in such a way that the
system trajectory becomes optimum, that is, the origin (or the step
height) can be reached in minimum time without chatter. Obviously, this
statement is valid only for an ideal system with perfect relays and no
transport delsys.

The dependence of the coefficients of the error derivatives kq
and ko on initial error or step height for fixed system parameters

has been studied theoretically (behavior of the system trajectory in
the phase space) and with the help of an analog camputer. Results fram
both methods sgree well.

In eddition, the dependence of k; and kp on the system param-
eters has been considered. It appears that average switching-function
coefficients assure good or quasi-optimum control for systems with
varying parameters as long as the uncontrolled systems are stable.



Unstable systems can be satisfactorily controlled; however, one should
not attempt to use the just-mentioned averasge kj; and ko, values.

The response of controlled systems to time-varying inputs has been
studied also. In this case a small steady-state error occurs when the
control coefficlents are chosen in such a way that the relay is working
in the chatter region.

In the last section of the paper, first studies of systems with zeros
in the transfer function are described. A linear switching function of
the type F = e + kyje' + koe" is bound to become discontinuous through
the influence of the zeros in the transfer function of the uncontrolled
system. If this type of switching function is still used, a new type of
chatter occurs in addition to the well-known after-end-point chatter.

The general third-order problem is still being studied.

INTRODUCTION

The investigation of contactor control systems has been confined
to particular problems for quite some time. The nonlinearity of these
systems for the most part prevents obtaining general results which
can be exploited immediately for practical design purposes. One there-
fore can follow up definite trends in studying such systems.

Since the difficulty of theoretical treatment depends strongly on
the poles of the transfer function of an uncontrolled system, a final
division of problems is given by separating the systems into those with
real poles only, camplex poles only, or real and camplex poles. There
are a number of interesting theorems established for systems with real
poles; unfortunately, however, many of the basic dynamic systems,
especially aircraft and missiles, represent systems with camplex or cam-
plex and real poles. As long as one is satisfied with simplifying the
description of such a system to the degree that a transfer function of
second order is obtained, the mathematical treatment is rather simple.

A number of papers have been devoted to this prcblem. Switching
depending on a linear cambination of the sensed deviation and devi-
ation derivative and the so-called optimum switching have been inves-
tigated for transfer functions with complex poles and without zeros.
Reference 1 reports an investigation of the influence of zeros. Partic-
wlar third-order systems with two complex and one real root and no

zeros have been preliminarily investigated and reported in references 2
and 3.

The present report is devoted to a more camplete investigation of
the third-order system with two complex poles without zeros and a pre-
liminary investigation of the influences of zeros. In general, so-called
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linear switching is investigated, which 1s a switching depending upon a
linear cambination of the sensed variables. In addition, the possibility
of obtaining optimum switching by using linear switching functions is
investigated. Optimum switching for a zero-seeking system, for instance,
means reaching zero with a limited number of switchings and without
chatter.

Since many of the systems to be controlled are systems with varying
parameters (influence of Mach numbers in aircrafts, for example), the
design of the contactor control should be such that the control mechanism
1s efficient even if these parameters change through a given range.

The theoretical spproach to the problem is based on a phase-space
representation of the motion, and theoretical results are confirmed and
extended by analog-computer studies.

This investigation was conducted at Stanford University under the
sponsorship and with the financial essistance of the National Advisory
Committee for Aeronautics. The authors wish to thank Dr. A. M. Peterson
of the Electrical Engineering Department of Stanford University for his
continued interest and his most helpful advice on the electronic problems
encountered during this investigation.

SYMBOLS

Ay, 80 constants in equation (A3)

50,51,52,53,50,51,52 coefficlents in differential equation of con-
trolled system

by,b, coefficients in equation (39), 51/50 and bg/go, respectively

C’Cl’CE’Clm’Cem constants

D damping coefficient

D* damping coefficient of after-end-point motion
d coordinate in phase space; see equation (32)
e error, X =Yy

E1,Eq; Bz phase-space coordinates



F switching function
F* modified switching function

kl,k2 coefficients of error derivatives in switching function

K¥* defines angle between switching plane and ElE2 plane; see
equations (33) and (34)

11,1p,1% coefficients of switching plane in EHE2E5 phase space

M constant
N, N amplitude of contactor output; see equation (6)
P differential operstor, a/ar
p.d input variable
XQ height of step input; also used for amplitude of sinusoidal
input

Ng output variable
Y(P) Laplace's transform of output variable
B constant factor in equation (A5)
4 real pole of uncontrolled system

- _ B,
5,5 output of contactor, & =0 —

a
3

5*(P) Laplace's transform of contactor output
€ phase constant
€m phase constant in mth interval
MiNo roots of differential equation for after-end-point motion
v=1y1-0D°
o = cos~L(-D)

o* = cos™1(-D¥)

OW + =




T time variable

T* time variable; see equation (AS5)

Tnm time variable in mth interval; Tp = O at start of interval
Ty dunmy time variable

o angular frequency of sinusoidal input

Al(...) abrupt change of a variable at switching instant
AQ(...) impulse of variable at switching instant

6*(...) combination of discontinuity and impulse; see equation (L4)

Subscripts:

av average values
m mth interval
0] initial values

(), time derivatives

sgn( ) algebraic sign of a real quantity; sgn f = £/|f]

BEHAVIOR OF THIRD-ORDER ZERO-SEEKING CONTACTOR
CONTROL SYSTEMS IN PHASE SPACE
In the present section the equation of motion of a genersal thirde-
order system 1s presented and the motion in phase space is described
and discussed.
Equations of Third-Order System
The system treated in this report is of interest, for example, in

studies of the longitudinal motion of an aircraft under certain simpli-
fying assumptions. The equation of the system is given by

§3y"'+ aeyn + 5-13" + -a-oy = .6‘2811 + Slg' + 605 (l)

where y and § sare the output varisble and the output of the con-
tactor, the primes indicate derivatives with respect to time, and the



coefficients &ap and Bn are constants. In Laplace's transform, equa-
tion (1) is expressed as follows:

- 2 - -
Y(P) = b2P + blP + by 5% (P) (2)

55P5 + £2P2 + 8P + ag

(The Laplace transform can be applied to equation (1) in an interval
between two switchings. In such an interval the motion is governed by a
linear differential equation.)

There have been a great number of papers written about contactor
control systems, but most of them discuss the systems with real poles
and little has been written for the case with a real pole and two con-
jugate poles. In this section the latter system is considered for the

case bg = bl = 0.

The denominator of equation (2) can be written as a product of a
second-order and a first-order term. Therefore, equation (2) with

52 = 51 = 0 yields

Y(P) = (Bol25) &% (P) (3)
(P + y)(P2 + 2DP + 1)

where 7y is a real pole and D < 1 Ybecause, as indicated in the intro-
duction, only third-order systems with two complex roots are considered
in this report.

Equation (3) can be rewritten as
(bof35)

P> + (y + 2D)P2 + (2Dy + 1)P + 7

Y(P) = &% (P) (4)
and the original equation (1) takes the form

"+ (7 + 2D)y" + (2Dy + 1)y + 9y = 52 =8 (5)
3

where (y + 2D) = (52/é5>, (2Dy + 1) = (51/53), and 7y = 50/33. The
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variable & is the output of a contactor and takes only two discrete

values N and (-N) according to the sign of the input. That means

5 = (N sgn F)Eg =NsgnF (6)

83
where F 1is a function of the error e and its derivatives
F = F(e,e',e") (7)
The error e 1is given by
e=X-y (8)

The type of switching function considered is a linear combination of the
error and its derivatives

F=e+kje' + kpe" (9)

The block diagram of the contactor control system described above 1is
shown in figure 1.

Substitution of equation (8) into equation (5) gives an equation
describing the system in terms of error and its derivatives.

e" + (7 + 2D)e" + (2Dy + 1)e' + 7ye
=x"+ (y +2D)x" + (2Dy + 1)x' + yx - N sgn F (10)

It should be mentioned that the variables e, e', and e" are continuous
at the switching points. However, equations (5) and (lO) show clearly
that e"™ is discontinuous at the switching points, which means that

the derivative of the chosen switching function dF/dT is discontinuous
at the switching points. This indicates the possibility of reaching "end
points" in an ideal system as described in reference 4 on page 32.

For a zero-seeking system
x=x'"=x"= x" = 0 (ll)
and equation (10)becomes

e+ (y + 2D)e" + (2Dy + 1)e' + 7e = -N sgn F (12)



Equation (12) can be solved for the mth interval between switchings since
5 =N sgn F is a constant.

The error and its derivatives are given by

e(t) = Clme_DTmcos(wm + ep) + Cgme-7Tm - (N/y)sgn F (13)
e'(7) = Clme_DTmCOS(VTm +ep+ 0) - Copye /™M (14)

" -Dry 2."7Tm
e’ (1) = Cype COS(VTm + oen + 20) + Copr©e (15)

where D = -cos o, v = V1 - D2 = sin o, and Cyps; Cop, and ep are
constants determined by the initial conditions for the interval.

Since switching is 1nitiated by the condition

F=0=ce+ke'+kye" (16)

the time of switching is determined by the solution of a trahscendental
equation. However, if the motion is described by a trajectory in phase
space (coordinates e, e', and e") all switching points lie in a plane.

The description of the motion by phase-space variables has proven
to be very convenient for a second-order system. In that case the motion
can be described in a phase plane, and the switching points lie on a
straight line if a linear switching function is used. The representation
of a third-order system in phase space is still very convenient when cer-

tain linear combinations of e, e', and e" are used as phase variables.

Introduction of New Phase Coordinates
The suggested set of transformed coordinates is

Eq = ye' + e" (17)

I

ye + e (18)

=
rn
i

Ez = e + 2De' + e (19)
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As shown in figure 2, the phase space is constructed with a set of coor-
dinates E; and Ep which are skewed with respect to each other and Ej3
which is perpendicular to the EjEo plane.

Substitution of the error and its derivatives into equations (7)),
(18), and (19) gives

Ej = Clme"DTm [7 cos (v + €m + 0) + cos (vry + ep + 20)] (20)

=D
Eo = Cipe [7 cos (v'rm + em) + cos (VTm + €p + o)] - NsgnF (21)

Y

Ex = sz(72 - 2Dy + 1)e' ™ _ (N/y)sgn F (22)

The equation of the switching plane in this new phase space is given by
F=-e+kye' + koe"

1-kyy + kp(29D - 1) (2D - y) -k +kpy -1+ gy - ko2

= 1 E5
-72 + 2Dy - 1 -72 + 2Dy - 1 -y2 + 2Dy - 1
or
F = 13E) + 12Ep + 13E3 (23)
where
1 - kyy + ko(29D - 1
1 = 17 + ko(2y ) (24)
-72 + 2Dy - 1
(2D - 7) - ky + koY
15 = L= (25)
-y2 + 2Dy - 1
- k - k~v2
15 _ 1+ 17 o7 (26)

-2 + 2Dy - 1
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A special case that should be mentioned here is that of a system
with 7y = 0, which is practically the same as the so-called second-order
velocity-control system of reference 4. The system equation is given by

e" + 2De" + e' = -N sgn F (27)

The new phase variables are given by

Eo = e’ (28)

E5 =e + 2De' + e

and as functions of time by

E| = Clme_DTmcos @Tm + ey + 20) (29)

=Dr
Ep = Cype mCOS(VTm + ey + 0) - N sgn F (%30)
Ez = Cpop - N sgn Fry (31)

These solutions can be obtained from equations (20) to (22) by a limiting
process; however, it is simpler to derive them directly from equation (27).

The system behavior can be best observed by plotting the projections
of the trajectory in the E;Eo» plane and in the E5d plane, which is
perpendicular to the EjE, plane and also to the switching plane
(figs. 3(a) and 3(b)). The new coordinate d 1is a linear combination of
E1 and Ep. In the E3d plane the switching plane appears as a straight

line. Additional diagrams showing E5 as a function of time (figs. 3(c)
and 3(d)) proved to be very useful.

Projection of trajectory into EjEp plane.- As can be seen from equa-
tions (20) and (21) or (29) and (30), the projection of the trajectory into
the Ej1E» plane is composed of portions of logarithmic spirals around two
centers N and (-N) (see also ref. 4, p. 24). Which center an arc belongs
to depends on the sign of the switching function F. An example of such a
projection on the EjEp plane is given in figure 3(a), where Py and Pp
are switching points. The time is measured by the angle subtended by an
arc around the center.

oW H =
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Projection of trajectory into E3zd plane.- The switching plane
F =0 and the EjEp plane intersect in a straight line. The coor-
dinate axis d (figs. 2 and 3(a)) 1is perpendicular to this intersec-

tion line. Figure 3(b) shows the projection of a trajectory onto the
Ezd plane.

The coordinate d depends on E; and Ep in the following way:

1.E. + 1E
d=-\1- D2 11 22 (32)
> 2
\[11 - 231D + 1,

The derivation of the above expression is quite similar to the deriva-
tion given for d; in reference 4, page 57.

The intersection of the switching plane with the Ezd plane is
given by

Ez = K*a (33)

with

Y2 - 211D + 1% 3 (34)

V1 - 02 i3

Diagram of Ez as function of T.- It is clear from equation (22)

K*=

that for positive values of 7 the phase variable Ez decays exponen-

tially toward N or (-N) depending on the sign of the switching function
as shown in figure 3(c). For systems with 7y = 0, equation (31) yields a
linear dependence of Ez on T (see fig. 3(d)). Correspondence between

Ez and E; or Ep is given through T which can be measured by the

angle subtended by the different arcs in the EjEo plane. These rela-
tions are demonstrated by the following examples.

Examples of System Behavior in Phase Space

Three examples will be presented for familiarizing the reader with
the behavior of the third-order system without zeros and with a linear
switching function.



12

Example (1) is a system with 7 # O described by:

D= 0.2
y=1
N=2

The switching coefficients are chosen as

ky =1

OW H =

Ky = 1.2

The motion starts with the values

Bip=0
Exo = 5.0
Ezg = 5.0
which correspond to )
ey = 5.0
eg' =0
eg =0

In figure 4(a) the motion is shown by projections of its trajectory
into the EjE, plane and into the E5d plane. The E,E5 plane is

rotated for ease of plotting. The diagram Ez(r) is added to demon-
strate the decay of Ez with time. This diagram facilitates the design

of the E5d projection of the trajectory.

The motion starts at Py, then proceeds around the spiral center (-N)
until it hits the switching plane at Py as is shown in the Ezd plane.

After passing P; the motion proceeds around the other center N toward
Po. At P, it is obvious that the motion cannot proceed any farther -

because the switching command cannot be execufted. If one tried to switch,
one would arrive at a situation which would demand a motion around the
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wrong center. An end point for the motion of an ideal system is Ps;
however, there are no ideal systems, and the ever-present time delay

in the contactor allows the motion to proceed toward the origin in the
switching plane as indicated in the E5d plane. Details for the after-

end-point chatter motion in this third-order system are discussed in
the appendix. The after-end-point chatter motion for second-order sys-
tems is discussed in detail in reference 3.

Example (2) is a system with y = O. The essential data are

D= 0.2
y=20
N=2

The coefficients of the switching function are
ky =1

2

ko

The initial conditions are given by

Eip=0

Epp = 5.0

Ezg = 3.0
which correspond to

eqg = 1.0

eg' = 5.0

eg' =0

As shown in figure L(b) the motion proceeds similarly to that of the
previous example except that E5 changes linearly with 1. At Pp, an
end point is reached, and the average motion proceeds according to the
equation of the switching plane

eqy + Kieay' + koegy, =0
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toward the coordinate origin. That means

eay = Ce70-20Tc05(0.667 + €)

where C and € are determined by e and e' at the end point.

the
are

The

or

Example (3) is chosen to show what happens when the coefficients of

switching function F are not properly selected. The system data
D=0.2
y =0
N =2.0
coefficients of the switching function are
ky = 0.8
ko = 0.2
initial values are
Eijo = 0
Eopg = 5.0
Ezg = O
eg = -2.0
eqg' = 5.0
eg' =0

Figure 4(c) shows that the projection of the trajectory into the
E1Ep plane tends strongly toward a limit cycle, and the projection

into the E5d plane does the same, however, somewhat more slowly. The

final state is an oscillation of the system with considerable amplitude.

A poor selection of ky and ko may cause a system to oscillate

or even diverge. The ratio of the initial values to N has a great

MmN st
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influence on the system behavior as can be concluded easily fram studying
the trajectories.

OPTIMUM RESPONSE OF THIRD-ORDER CONTACTOR CONTROL SYSTEMS

WITH LINEAR SWITCHING FUNCTIONS

In the previous section new phase coordinates were intrcduced, and
the behavior of systems was studied by observing their trajectories in
the phase space. The purpose of thils section is to cbtain optimum
response in systems with linear swilitching functions. Optimum response
for zero=-sceking systems and for step-function input are discussed in
detail. The results obtained in this section are used in the next sec=
tion for studying quasi-optimum response.

Optimum Response of Zero=Seeking Systems

Zerow=gseeking systems are systems designed to reduce an initial error
to zero. Their response will be called optimum if the error and its
derivatives are reduced to zero in minimum time. A switching function F
which gives optimum response is called an optimum switching function.

For second~order systems F = 0 represents a curve in the phase plane;
for third-order systems F = 0 1s glven by a surface in the phase space.
The optimum switching curve for second-order contactor control systems
has been extensively investigated by Bushaw (ref. 5) and the optimum
surface for third-order systems is under investigation by Yin (ref. 6).

The systems discussed in the present paper have linear switching
functions. It is important to answer whether optimum response for a
given disturbance is realizable with this arrangement. The answer is
affirmative if the number of switchings is limited to only two. Suppose
the system starts from an initial point, switches twice on the optimum
surface, and goes into the origin. Now if the orientation and the slope
of the switching plane is chosen so that those two switching points on
the surface and the origin are on this plane, optimum response can be
realized by a linear switching function. However, it is cbviocus that
the optimum switching plane depends on the initial point of the
trajectory.

It is quite easy to construct examples of the optimum trajectory
in phase space. It is convenient to plot the trajectory backward,
starting fram the origin on a zero trajectory, and to proceed in nega=-
tive time. Exsmples are given in figure 5 for the cases of y = 0
and y = 1. After the second switching point Py, any point on the final
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spiral could be chosen as the initial point. Once switching points Py
and P, are chosen, it is possible to determine a plane which passes
through these points and the origin. The coefficients ky and k2 in

equation (16) determine the switching plene and can be obtained by
solving a system of two linear equations.

Optimum Response for Step Input

It is a common technique to investigate the response of linear
systems through the response to a step input. The systems treated in
this report are nonlinear, and hence the law of superposition does not
hold. However, it will be valuable to have the knowledge of step-
function response because it shows the response to a fast-changing input.

Referring to equation (10), it is noticed that the right-hand side
of the equation contains terms of input and its derivatives. For step
input, the following relations hold:

x = xo = Constant (35)

and
x'=x"=x"=0 (36)
Thus, e@uation (10) becames

e+ (7 + 2D)e" + (2Dy + 1 Je' + ye = yx; - Nsgn F (37)

As i1s seen, equation (37) has a term 7Xg on the right-hand side.

Previous investigations, especially Lindberg's, have shown that stability
of such systems can be expected only for

[7%0] < INI (38)

One can understand this immediately. The existence of yxy 1in equa=-

tion (37) means that the spiral centers N and (-N) are shifted up or
down by 7xp. The system fails if I7XO| is bigger than N.

This ghifting effect can be removed by feeding the input x 1nto
the controlled system directly as shown in figure 6. This feeding of
the input removes the shifting term 9x; and makes the system capable
of handling any size of step input theoretically. The forward feeding
of x has been applied to all systems described in the present paper,
although it has to be borne in mind that the system parameters are not

W+ x
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always quite constant. Thus, it is not advisable to design a system
such that 7x 1s much greater than N for the sake of the stability
of the system. For systems having 7y equal to zero, this forward
feeding of x 1is not required.

Graphical Determination of Optimum Switching Plane
for Step Input

For systems with forward feeding of x, the response to step inputs
is the same as for 2zero-seeking systems with initial error but no initial
error derivative and no initial error acceleration. Therefore, trajecto-
ries can be traced backward as described earlier. The initial point is
given by eg £ 0, eb = 0, and eg =0 or Ejp =0, Epy = 7eg, and
Ezp = eg. This means that for y = O the initial values Ejp and Epg
are both zero, or that in the EjE» plane the initial point and the point

which indicates the end of motion are coinciding and are lying in the
coordinate origin. Figure 7(a) shows projections of trajectories in the
E1Ep plane for a system with 7 = 0. Figure 7(b) gives the corresponding
variation of Ez with time. Notice that the plot is done backward in

time. The trajectory PgPiP,0 belongs to a rather low step input. The

larger input corresponds to a larger loop. At first glance the trajectory
PoP1Po0 seems to indicate a limit to the height of the step input which

still can be followed up with two switchings; however, this is not the
case. Consider figure 7(c) which shows some interesting trajectories.
It is obvious that the trajectory portion PpP; can wind around (-Nj)

many times and still be allowed to continue toward the zero trajectory.
In principle, one could have infinite Ez, which is equivalent to leaving

the P; projection at (-N1). This fixes the arcs PPp and Pp0. For
lesser, but rather large, heights the switching point P; would lie very
close to (-N1) and, therefore, one concludes that for rather large heights
the location of the switching points P; and Pp, in the EjE5 plane
changes very little and their E3 coordinates are practically fixed.

This condition is equivalent to having ki and kp tend toward limit
values, because for 7y = O the values 1j, 12, and 13 are given by

11 =ko -1, 1lop=ky - 20, and 13 =1 and 1; and 1o depend on the
location of P; and Po.

The case D = 0O demands specisl consideration. 1In this case the
trajectory projection in the EjEp plane degenerates to circles.
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Figure 7(d) shows that Ei and ﬁé coincide. Repeated winding

around (-N) allows large step inputs without any switching. °
These last considerations are very interesting for determining limit
values for k; and k25 however, in practice one should not try to make

the ratio xo/N too large, as was mentioned earlier.

In figure 7(e) trajectories are shown for systems with 7 # O.
In this case the initial point lies on the E, axis. Switching points
have to be chosen such that Eyq = 7E30. This means that the determi-

COW +H x|

nation of an optimum path in the E1E2 Plene can only be done by & trial-
and-error method with the diagram of Ez against T as essential help.

Simulation of Systems on Analog Computer

Details of the simulation on the analog camputer are given in fig=-
ure 8. The wiring is complete in the sense that variable inputs can be
studied. Since E;, E,, and E3 are only auxiliary variables, it is )

satisfactory to have e, e', and e"; however, for comparison with the
theoretical work it is desirable to see E3 sgainst T. Therefore, a 4

special arrangement for obtaining Ex = e + 2De' + e" 1is made.

It is possible to determine an optimum set of k1 and k2 on the

camputer by observing the responses on an oscilloscope and by diagrams
drawn by a pen recorder. When projections on the ElE2 plane are watched

in the oscilloscope, E3(T) is also observed; the coefficients kq
and k2 are varied until optimum response is obtained.

In figures 9(a) and 9(b) the optimum values of k, and k, for

different heights of input steps are given for systems with y =0

and 7 = 1, respectively, and D = 0.2. Also, values obtained by the
graphical method are given in the same figures. It is apparent that the
values taken by the two methods lie close together, proving the accuracy
of simulation. Fram now on all the data to be taken will be obtained by
similation.

The height of the input step is limited to a region O < xQ/N < 4 ’

because, as mentioned earlier, it is not recommended that systems be
designed for a higher level input. -
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For the reader who compares these results with those in reference 3,
the following remarks will be helpful. The k coefficients (kl and
kg) appearing in figure 28 of reference 3 arez defined for a system in
which a different time scale is used. The values of k have to be
normalized to see the correspondence. Equation (129) of reference 3
states that

em+ 2§9e" + 926' = ngra¢

where ¢ 1is the damping ratio, Q 1is the natural frequency of the undamped
third-order system, and V.,  1s the runaway velocity of the third-order
controlled process and ¢ is the switching function. Upon using the fol-
lowlng set of transformations (subscript L refers to the notations used

in ref. 3)

Q’TL=T

CL'—‘D

v

2:1\[
Q

in the above equation one can derive equation (2’(). It 1s obvious that
kg = ky and kaLQa = X,

Dependence of Coefficlents k, and on Height of Step Imput
1

for Various System Characteristics D and 7

It is known that the equation of motion of the uncontrolled air-
frame changes its constants D and y as the speed of flight changes.
The value of D could even be negative for particular speeds. Since
it is one of the purposes of this investigation to design a stable con-
trol system with a linear switching function, the dependence of optimum
sets of k; amd k, values upon the frame constants D and y for

various step inputs have been investigated.

Figure 9(c) shows the variation of k, and with variation of
1

step input with D as parsmeter for systems with y = 0. As mentioned
earlier, k; and k, tend toward limit values with increasing xO/N

ratio for positive values of D (epproaches are osclllatory, see
ref. 3). However, a similar consideration shows that for negative
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values of D Dboth constants will tend toward infinity with increasing
step height.

Figure 9(d) shows the variation of k; and k, in the same way

for systems with 7y = 1. It should be noted that larger step heights

demand higher values of kl and k2 with decreasing D. There seems

to be for each D a particular step height at which a steep increase
for the k is starting. Thus far no simple criterion for this break-
away step height has been found.

In figure 9(e) the influence of different values of 7y for fixed
D = 0.2 on the magnitudes of optimum kl and k2 is shown. From fig=-

ure 3(c) it could be expected that the value of 7y has a strong influ-
ence on kl and k2. Since 7y determines the slope of the EB(T)

curve, one might consider it understandable that an increase of 7y acts
as an increase of N. This agrees with the appearance of the curves
for y =2 when canpared with those for ¥ =1 in figure 9(e).

Tt has been shown in figures 9(c), 9(d), and 9(e) that the variations
of kq and k2 are quite large for higher levels of input, especially

for the negatively damped case. It can be concluded that the use of a
fixed set of values of k should be limited to a lower level inputk.

QUASI-OPTIMUM RESPONSE OF THIRD-ORDER CONTACTOR

CONTROL SYSTEMS TO STEP INPUTS

The purpose of the present section is to study the response of
systems with a fixed set of kl and k2 selected fram the dats from

the previous section, in which the varistions of optimum switching coef-
ficients kl and k2 for step inputs were investigated. The constants

D and 7y of the systems under control are varied.

A third-order contactor control system with a fixed switching plane
could give an optimum response for a particular height of step or a par-
ticular initial disturbance. For steps or initial points close to that
step or initisl point the response of the system will be quite close to
optimum. Such response will be called quasi-optimum response. An adap=-
tive system should give quasi-optimum response for various heights of step
input.

oW - =



WW - =

21

Response of Systems With Fixed D for
Various Heights of Step Input

As is seen in figure 9(c), varistions of k) and k, are rather
small for D = 0.2. In such a case a medium set of ky and k2 is
expected to give good response for various heights of steps. The set
used here is

k, = 1.00

ko

The results are found to be fairly good for input amplitudes

0.37

20 _ Xp < 80

25 N 25

In figures 10(a) and 10(v) responses are given for a system with
D=0.2 and y = 0. Error e and the phase variable E: =e + 2De' + "

are plotted for two step inputs xo/N = 20/25 and xo/N = 80/25. In

both cases there are two essentlal switchings and a slight chatter toward
the end of the motion.

The next example is an interesting test case because the uncontrolled
system is negatively damped. The selection of the values of k is
essentially determined by the stablility of the controlled system. Fig-
ures 10(c) and 10(d) show responses for & system with D = =0.2 and 7y = O
and coefficients kj = 1.30 and k, = 0.93. For xo/N = 40/25 an end
point is reached too fast, and for xo/N = 100/25 the response is oscil=-

latory. Larger values of k would diminish the oscillation, but the
response would be slower and far from optimum.

The third test run is for systems with ¥ f 0. In figures 10(e)
and lO(f) responses are shown for a system with D = 0.2, 7y =1,
ky = 1.70, and k2 = 0.45. There are essentially two switchings, reaching

an end point with slight chatter. The responses are satisfactory when
the wide range of step heights investigated and their influence on kq
and kp (sce fig. 9(b)) are considered.
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It is shown in these examples that in order to obtain quasi-optimum
response for various inputs the level of input should be smaller than the
restoring force N.

Response of Systems With Varied D and Fixed Switching
Coefficients to Step Inputs

As mentioned earlier, airframes change their coefficients with the
speed of flight. Therefore, it is important to design control systems
which operate satisfactorily under such conditions.

The controlled system must be stable at all times and must give
good responses. These two requirements determine the cholce of the
switching plane; therefore, there will be a compromise in any case.

The first example is given in figures 10(g) and 10(h). Responses
are recorded for a system with vy = O under two extreme conditions,
D= 0.4 and D= -0.2. The values of kj and kp are chosen to be

a little larger than the average of the optimum values of kq and k2

for each case. The responses seem to be fairly good for both cases.

The second example (figs. 10(i) and 10(j)) is a similar test for a
system with 7y = 1. The response is a little worse than in the pre=-
ceding example, as can be expected fraom figure 9(d). The variation of
optimum values of k 1is bigger for this system.

RESPONSE OF QUASI-OPTIMUM SYSTEMS TO TIME-VARYING INPUT

The study of the response to step inputs was only a means to test
systems in a simple way. It shows the reaction of systems to a very
fast changing input. However, it is necessary to test the quasi-optimum
systems for their responses to more general time-varying inputs.

An optimum system should follow the input with minimum instantaneous
error at all times. This is a rather strict requirement, and an analyt-
ical treatment of this problem is very difficult. Contactor systems can
follow a varying input best when working most of the time in the chatter
region. This implies that frequencies of the input signal have to be
lower than the chatter frequency, as discussed in reference 3.

The behavior of systems with fixed switching coefficlents was
studied for sinusoidal and for irregular inputs. Sinusoidal inputs have
the advantage that their derivatives can be obtained without using

oW H =
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differentiators. The term "irregular" input is used instead of rendom
input because no instrumentation for producing & truly "randam” input
was at hand when these experiments were done.

Sinusoidal Input

A sinusoldal wave x = xp cos wT 1is generated on the sesme camputer

board as that used for other inputs and is used as input signal. The
derivatives are obtained at the same time.

The k; and k2 values are selected for the maximum value of 1X] »

that is, the amplitude of the cosine wave, because the system should be
pulled into the input signal as fast as possible. The chatter frequency
depends on the time delsy in the contactor (ref. 3). In the present
study time delsy was minimized by using diodes as switching devices.

Figure 11 shows the results of studying responses to sinusoidal
inputs for systems with D =0.,2 and y =0 and ¥y = 1. The maximum
error at steady state increases slowly with the frequency of the input
and jumps suddenly when the maximum local acceleration of the input
becames too big (breakdown frequency, see ref. 3). It is evident that
the system with ¥ # 0 1is inferior to that with 7y = O.

Figures 12(a) to 12(d) present the response of systems with varying
parameter D. The real pole is fixed; y = 0 in figures 12(a) and 12(b)
and y =1 in figures 12(c) and lz(dS. The steady-state error is amaz-
ingly small in both cases. It 1s worth noticing that the systems do not
have any phase shift, which is inherent in linesr systems. After a small
transient the system follows the input signal closely, with a steady-
state error entirely due to the chatter of the contactor.

Another example in which the parameter ¥y 1s varied is given in
figures 12(e) to 12(g). The steady~-state peak-to-peak error seems to
increase with 7, which cannot be quite explained in the present stage
of investigation.

Irregulaer Input

An irregular time~varying input was fed into the system. The
irregular input is a kind of modified saw-tooth curve. Rather large
errors have to be expected near the points of abrupt change of slope
where the second derivative x" is rather large and the imperfections
of the differentiators become noticeable.
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As seen from equation (lO), the higher derivatives of x msy
reinforce or weaken the influence of the term N sgn F, which is equiv=-
alent to a shift of the spiral centers 1in the E1E2 plane in a favorable
or unfavorable way.

The test runs were performed with systems having varying parameters
D and y. These are

y =0, N=25, D

7 l, N 25, D -0-2, O’ an, Ooh‘

D=0.2, N=25, 7 =0, 1, 2

The switching coefficients k; = 1.30 and. k2 = 0.30 are used. The

values of these coefficilents are primarily chosen for the sake of the
stability of the systems. The results are quite alike for all the
systems, and scme of them are shown in figure 13.

This random input should still be investigated in greater detail.
PRELIMINARY EXTENSION TO SYSTEMS WITH ZEROS

In the preceding sectlons it was assumed that the transfer function
of the third-order system has two camplex poles and one real pole, but
no zeros. It is the purpose of this sectlon to present same preliminary
considerations on the systems with zeros. The phase-space coordinates
E], Ep and E; as defined in equations (17), (18), and (19) are used

for a theoretical description of the motion of such general systems, and
a linear switching function is assumed.

The third-order system with zeros is presented by equation (1).
Followiﬁg the considerations of the section "Eqnations of Third-Order
Systems  this equation can be written in the following form:

YU+ (7 + 2D)y" + (2Dy + 1)y' + 7y = b 8" + by8' + & (39)

where

8 =Nsgn F (40)

F=-e+kye'+ kpe" (9)

W H =
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Equation (39) can be rewritten in & more convenient form by using e
and x instead of ¥y

e+ (7 + 2D)e" + (2Dy + 1)e' + ye
= x"+ (y + 2D)x" + (2Dy + 1)x' + yx - b26" - bl‘é' -9 (41)

For a zero-seeking system input x and its derivatives are zero and
equation (41) becomes simply

e+ (7 + 2D)e" + (2Dy + 1)e' + 7e = -bod" - b1B' - B (42)

Equation (42) has the same solutions as those described earlier for
the mth interval between switchings since & 1is a constant and its
derivatives are zero in such an interval. But at the instant of switching
of the contactor, the presence of the derivatives of & in equation (42)
becomes significant. The value of & changes abruptly, which means that
' 1is equivalent to an impulse and 8", to a double impulse. Referring
to equation (42) it should be noticed that to maintain the equality at
the switching instant the derivative e" must contain a double impulse,
and e" must have an impulse when e' is changing abruptly. The equa-
tion should be integrated over a short interval including the switching
instant for finding these discontinuities. The process of this integra-
tion is well explained in reference 1. If the switching instant is
called T = O, the integration stretches from T = -A/2 to A/2, with
A tending toward zero in the limiting process.

A2
lim Jf [é"'+ (r + 2D)e" + (2Dy + 1)e' + yeldr
A0 Y -p/2

A/2

= lim f (-bgﬁ" - b8 - B)dT (43)
A0 Y -p/2

or

A¥e" + (7 + 2D)Aje’ = -bpAS! - b1 B (4k)

where A signifies a discontinuity, A, an impulse, and A* a combina-
tion of both. A double integral shows the discontinuity in e' at the
switching instant:
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A/E T
lim u[ [%"’+ (y + 2D)e" + (2Dy + 1)e' + 7%]d71 ar
A=0 Y -Af2 -A/2
A/2 T
= 1lim f f (03" - py8" - 8)ar, |ar
A-0 Y -pf2 |V p/2
or
Ae' = -bo/y B (45)

This shows the presence of a discontinuity in e'. Equation (45) is sub-
stituted into equation (44) to get the abrupt changes in e":

n¥e" = [b2(7 + 2D) - bl]AlS - bolpB! (46)

It is seen that the above expression contains an impulse 5'; but the
important result is the discontinuity of e'" at switching, and the last
term boAsd' is not significant for the construction of the trajectory.

The discontinuity in e" at switching is glven by
Y

Me" = [b2(7 + 2D) - bl]Als (&7)

Therefore, the motion of the system in the error-phase space can be con-
structed as in the cases without zeros except that there is a discontinu-
ity in e" and e' at every switching instant.

In case the transfer function has only one zero, which means that
bo = O, there is still a discontinuity in e", but no discontinuity in

e' at switching.

The switching function F = e + kje' + kpe" has discontinuities of
first and second order for the general case (bp £ 0; b1 £ 0), and a first-

order discontinuity only if by = 0. The derivative dF/dr is discontin-
uous at switchings, even if the value ko = O should be chosen. It means

that end points and after-end-point chatter may occur even in this special
case.

A detailed study of such systems is being carried out at this time
but is not reported in the present paper. Here only some special features
of the control of systems with zeros will be mentioned.
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Figure 14 shows the behavior of F near switching points for the
case bp = 0. Let a positive F in figure 14 approach zero. At zero
a switching command is given, and immediately, for positive by and ko,

F tries to jump back to a finite positive value. However, the point SI

cen be reached only if at this time & actually changes from N to (-N).
Since at Si the value F > 0 exists, & cannot be negative. In other

words, every zero point of F reached on a regular trajectory proves to

be an end point for an ideal system. If a delay in executing the switching
command is assumed, the broken curve represents the behavior of F. The
Jumping ¥ creates a new switching point whose command will be followed
again with a delay. The necessary Jjump creates a third switching point,
and so on. It becomes obvious that the first zeroing of F starts a
chatter motion. The motion will be determined by the average value of B
in this chatter region. If this should be zero, uncontrolled chatter will
occur. When &gy =0, ©® stays at N and at (-N) for equal amounts of
time. As soon as By 1is no longer zero (that change occurs at about T1
in fig. 15), another type of chatter occurs. Actual examples (not included
in this report) show that for b; > 0 and ko > O the motion starts on a
regular trajectory. At the very first point where F = 0, uncontrolled
chatter motion begins. Some time later, this changes to controlled chatter
and finally changes again to uncontrolled chatter, which then leads to a
tiny 1imit cycle around the origin of the phase space. The dimensions of
this limit cycle depend entirely on the imperfections of the system (time
delay, threshold, dead-zone).

In the case of by > 0, kp < O the jump occurs in the other direc-
tion (see fig. 16), and the motion proceeds without chatter.

The cases with bo % 0 and Dby # O are more complicated since

MF

U

Als{-klbg + kg[bg(y + 2D) - bl:l}

Als{b2 [(7 + 2D)ky - kl] - blkg}

However, one can choose k; and ko og better, the ratio (kl/ke) 50
that AF = 0. This happens if the following relation holds:

b
LS. (y + 2p) - =%
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Whether this is a good choice still has to be investigated, particu-
larly since one has to count on a controlled system whose coefficients
by, bpo, D, and y may change during operation.

It remains to be determined whether one is justified in using a
switching function which has discontinuities. It is obvious that for
systems with zeros, switching functions of the type F = e + kje' + koe"

generally will be discontinuocus. However, by feeding & back into the
switching function, that is, forming a function F¥

F*¥ = e + k.e' + k.e" + £(5)

1 2

such discontinuities can be avolded. Whether this is an advantage for
obtaining a fast follow-up with small errors still has to be investigated.

Stanford University,
Stenford, Calif., January 31, 1959.

(OIS Il ol H
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APPENDIX A
MOTION AFTER AN END POINT IN PHASE SPACE

As has been indicated in figure 4(a), the system creeps toward the
origin after an end point if a small time delay is present at the cone
tactor. The average motion during this time is governed by the equation
of the switching plane

F=egy + Kyegy' +koey,” =0 (A1)

End points occur only if k2 > 0, because 1n this case the discontinuity

in the slope of dF/dT at F = O mgy not allow a continuation of the
motion in an idesal system. Positive ky 1s advised for anticipating

future changes of e. Therefore, only solutions of
] no_
egy + Kjegy + keeav =0
for k3 >0 and kp > 0 have to be considered.

The equation (Al) msy be written
— l-}o—]—'-e =0 (A2)

and the solutions are

AT T
e = Ale L + A2e7\2 (A5)
with
2
k k. = 4
RS 1 ks
MN,p= - B + B (ak)
For
k2 = by

there is a double root.
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If k12 > Lkp, there are two real roots and for k12 < kky there

are two conjugate complex roots. In case of two complex roots (this is the
the case which occurs, for instance, in the so-called "quasi-optimum"
systems) a convenient plot of E; and Ep using spirals could be done

only if a new time unit were introduced:

= pT¥ (85)
Then equation (A2) leads to

With B2 = k,, one cbtains

2
d~e k de
oy 4 1\, —BY e =0
ar* k2 dr*
or
2
dce e
av av =
ot 2t Cav = 0 (A6)
where
k
D* = — L

In phase planes whose axes form the angle (x - o*) with cos o* = -D¥
with each other, phase traJectories of the average motion are represented
by logarithmic spirals.

The initial conditions for the spiral are given by the E; and E,

values at the end point. After having designed the average motion in the
new plane, the curve must be transferred into the original El - E2 plane

with cos o = -D. This is best done point by point.

oW H =
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In the case of real roots, both roots will be negative. For real
roots solution (A3) allows one to write down immedistely a convenient
relation between E; and E,. With

1
1av Yeay + eav

]
= ye., + €
E2av 7€av av
one obtains

_ 7\1‘1’ 7\2T

-}\lT 7\21-

E = (e + C2e

20y | "1

By eliminating T from these two expressions, the equation for the
Ej - E5 trajectory becames

(B - 7\1E2))\l = M¥(E, - >\2E2)7\2 (A7)

The following example shows the construction of the after-end-point
motion in the phase space:

Let the system be determined by N =25, D= 0.2, y =0, k3 = 1.0,
and k2 = 0.5.

The initial conditions are given as

Eig=90
E,q = 20
E. =0

30
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or
ey = - 8
T
ey = 20
eOH = O

The system reaches an end point at the point

E] = -13.4

Ey = 7.2

E; = -10.8
or

e = -0.3

e' = 7.2

e = =134

The aversge motion during chatter is given by the differential equation

1t t
Cay + 2€4y

+ 24, =0 (A8)
with the characteristic roots
)\1,2 = -li i

That means that the average motion is under-damped and that the use of
logarithmic spirals simplifies the plotting. Therefore, equation (A8)
is normalized by introducing

-
I

pT*

with

B = Vkz

The damping coefficient turns out to be D¥* = 0.707.

CoOWN + =
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The trajectory of the average motion 1s first drawn in a normalized
Phase plane by using a logarithmic spiral and then denormalized point by
point and plotted in the original phase space. Figure 17 shows the tra=-
Jectory in the phase space. As is seen fram the figure, the system is
rapidly brought down to the vicinity of the origin.
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$Es

Figure 2.- Illustration of phase space.

E2

(a) Projection into Ej - E, plane.

Figure 3.~ Projection of trajectory.
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Switching HPlone
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(b) Projection into Ezd plane.
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(d) Diagram of Ez against T;

(¢) Diagram of Ez against 7,
y = 0.

7 # 0.
Figure 3.- Concluded.
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End point

N=2
D=0.2
Y= |
k|=|
ko= 1.2

(a) Example (1); y £ O.

Figure 4.- Examples of motion in phase space.
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(v) Example (2); 7 = O.

Figure 4.- Continued.
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Figure 5.- Example of optimum response. Trajectory was plotted backward;
N =2.0; D=20.2.
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Figure 5.- Concluded.
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(a) Projections in EjE, plane. y = 0; D = 0.2; N = 25.

Figure 7.- Optimum responses to step inputs of different heights.
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(d) Response where D =0 and 7 = O.

Figure 7.~ Continued.
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y=1; D=0.2; N = 25.

(e) Response to step input with 7 £ O.

Figure T.- Concluded.
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o Simulation
——————— Graphi cal
Kel= = =
0 kl
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G I 2 3 4

Input step height xO/N

(a) y=0;D=0.2.

- Figure 9.- Optimum values of kj and k2 for various step inputs.
N = 25.
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x  Graphical check points

ki,
K2’

2.0 ko

| | | |
O ! 2 3 4

Input step height xO/N

(b) y=1; D =0.2.

Figure 9.- Continued.
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1 | L \

| 2 3 4
Input step helght xO/N

(c) 7y = 0; various values of D.

Figure 9.- Continued.
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ki,

Input step height xO/N

(a) 7 = 1l; various values of D.

Figure 9.- Continued.

RET=M



W-138

ko

53

l 2 3
Input step height xO/N

(e) Various values of y; D = 0.2.

Figure 9.- Concluded.
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Figure 12.- Concluded.
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Figure 135.- Response of system to irregular input.
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